Fiche 3 : Mise sous forme canonique d'un trinôme du second degré

1) Compléter le tableau suivant en utilisant les identités remarquables $a^2 + 2ab + b^2 = (a + b)^2$ et $a^2 - 2ab + b^2 = (a - b)^2$

$a^2 \pm 2ab + b^2$ (forme développée)	a	b	$(a \pm b)^2$ (forme factorisée)
Exemple : $x^2 + 4x + 4$	X	2	$(x+2)^2$
$x^2 - 2x + \dots$			
$x^2 - 6x + \dots$			
$x^2 - 10x + \dots$			
$x^2 + 8x + \dots$			
Exemple : $x^2 + 5x + \frac{25}{4}$	X	<u>5</u>	$(x + \frac{5}{2})^2$
$x^2 + 3x + \dots$			
$x^2 + 7x + \dots$			
$x^2 - 9x + \dots$			
$x^2 + \frac{1}{2}x + \dots$			
$x^2 - \frac{5}{3}x + \dots$			
$x^2 - \frac{7}{5}x + \dots$			

- 2) Compléter les égalités en suivant l'exemple : Exemple : $x^2 + 5x = (x^2 + 5x + \frac{25}{4}) \frac{25}{4} = (x + \frac{5}{2})^2 \frac{25}{4}$.
 - a) $x^2 6x =$
 - b) $x^2 + 8x =$
 - c) $x^2 + 3x =$
 - d) $x^2 + 7x =$
 - e) $x^2 \frac{5}{3}x =$
- 3) Compléter les égalités en suivant l'exemple : Exemple : $x^2 + 4x + 9 = \underbrace{x^2 + 4x + 4}_{a^2 + 2ab + b^2} 4 + 9 = \underbrace{(x+2)^2}_{(a+b)^2} + 5$.
 - a) $x^2 6x + 3 =$
 - b) $x^2 + 8x 2 =$
 - c) $x^2 + 3x + 6 =$
 - d) $x^2 + 7x 5 =$